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1. Introduction. The use of digital computing machines in finding approximate 
solutions of partial differential equations is extensive. Because of expense in using 
such machines, there is considerable motivation to find the most efficient means of 
solution. It is the purpose of this communication to show that the difference scheme 
of Saul'ev [1], [2], [3], [4] may be extended to two or three dimensions. This tech- 
nique for approximating the diffusion equation is explicit, stable for time steps of 
any size, and appears to be competitive with other methods of approximating the 
diffusion equation. 

Consider the one-dimensional form of the diffusion equation in Cartesian co- 
ordinates. If the time derivative is approximated by a forward difference and the 
distance derivative is approximated by a central difference at the original time 
level, the system is explicit. That is, the dependent variable at the succeeding time 
step, may be written explicitly in terms of that variable at the earlier time step. 
It is well known [5] that stability requirements limit the size of the time step in 
proportion to the square of the size of the distance increment. For many applica- 
tions the allowable time step is prohibitively small. By employing implicit methods, 
this limitation is removed [5]. In these methods the distance derivative is approxi- 
mated by a central difference formula, but evaluated at the succeeding time step. 
Solution of simultaneous equations is necessary to establish values of the dependent 
variable at the new time level. It appears that the scheme of Saul'ev combines the 
best features of the two methods mentioned above. It avoids solving simultaneous 
equations but retains stability for any size time step. 

For simplicity, the method of Saul'ev will be applied to the diffusion equation 

Au a2u 2u 

At aX2 ay2 

(1.2) u(x, y, O) = f(x, y) 

where f(x, y) has a valid Fourier series expansion in x and y. The independent 
variables will be limited to 0 < x _ xi, 0 _ y < yi, and 0 < t. Boundary condi- 
tions are assumed as 

(1.3) u(0, y, t) = u(x, O, t) = 0 

(1.4) u(xi , y, t) = u(x, Yi , t) = 0. 

Fourier series methods may be employed in solving the problem, and the exact 
solution may be deduced from that given by Carslaw and Jaeger [6, p. 187]. It is 
obvious that the method of Saul'ev is applicable to a more extensive class of prob- 
lems. However, the object is to illustrate the difference scheme and show a com- 
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parison with other numerical methods. Extension to three-dimensions is possible. 
For the sake of simplicity two-dimensional problems will be treated. 

2. Some Difference Schemes. Dependent variables, v and z will be employed 
in the difference scheme. Numbers 1, mn, n are used to identify points in the x, y, t 
space, and, hopefully, the difference scheme will be consistent with the diffusion 
equation such that 

(2.1) Vl,m,n u(lAx, mAy, nLAt) 

(2.2) Zl,m,n u(lAx, mAy, nAt). 

Numbers 1, m, n are integers restricted as follows: 

(2.3) 0? ?I <xi/,X 

(2.4) 0 < ? < Yi/'AY 

(2.5) 0 < n. 

Use of a difference operator is convenient. Let Al,n(V)m be defined as 

(2.6) Al,n(V)m = Vl,m+l,n - Vl,m,n . 

The two subscripts on A are constant in forming differences of v. Then difference 
quotient operators L, R, P and Q are defined as 

( 2.7 ) L (v_) AI,m(V)n _ 'Am,n(V)l - Am,n+l(V)1- __ AI,n(V)m -A1,n+i(V)m-1 (2.7) L(v) - 'At (,AX)2 (,Ay)2 

(2.8) R (z_) Al,m.(Z)n _ \Am,n+1(Z)I Am,n(Z)1-1 _ Al,n+?(Z)m - AI,n(Z)m-1 (2.8) R(z) - 'At (,AX)2 (A) 

(2.9) P (v) Al m(V)n _ Am,n(V)l - 
Am,n+l(V)i-i _ Al,n+l(V)m 

- Ai,n(V)m-1 (2.9) P(v) - 'At (,AX)2 (,Ay)2 

(210 ) Q (z) /\ AI,m(Z)n _ \Am,n+?i(Z) - Am.,n(Z)-1 __ AI,n(Z)m - A1,n+1(Z)m-i (2.10) Q(z) - 'At (,AX)2 (,Ay)2 

By setting equations 2.7 through 2.10 to zero, the following equations may be 
obtained: 

(1 + W + C )Vl,m,n+l = Vl-1,m,n+l + Vl+l,m,n 

(2.11 ) - ( 1 - W ? C )Vl,m,n + C [V_,m-,n+1 + VI,m+l,n] 

(+ W + C2 )Zl,m,n' = Zl-l,m,n + Zl+l,m,n+l 
(2.12) 

- ( - w + C )Zl,m,n + C [Zi,m+l,n+? + Zi,m-l,n] 

(+ W + C2 )Vl,m,n?l Vl-l,m,n?l ? V+l,mr,n 

(2.13) 
- (1 - w + C)Vlm",n + C [Vl,m-i,n + Vl,m+l,n+l] 

(1+ W + C2)Vl,m n+? = Vl-l,m,n + Vl+l,m,n+l 

(2.14) 
- (I - W + C )Vl,m,n + C [Zl.m -1in?i + Zl,m?l,n]. 
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Constants c and w have been used such that 

(2.15) c= Ax/Ay 

(2.16) w= (Ax)2/At. 

Either equation 2.11, 2.12, 2.13, or 2.14 may be used to generate approximate 
solutions to the diffusion equation. Combinations of these equations also offer 
potentially interesting approximations. Of the possible computing schemes the 
following are considered in illustrative problems below: 

1. Use equation 2.11 only. 
2. Use equation 2.12 only. 
3. Use equations 2.11 and 2.12 alternately. For example, assume n in equation 

2.11 is an even integer, and for all possible 1 and m, vl,m,n?1 is computed using 
equation 2.11. Modify equation 2.12 by adding one to the time level subscripts. 
Set Zi,m,n?+ in the modified equation 2.12 equal to Vl,m,n?+ and then compute Zl,m,n+2 . 

By repetition of this sequence, the dependent variable is computed at odd time 
levels using equation 2.11 and at even time levels using modified equation 2.12. 
This corresponds to the scheme proposed by Saul'ev and may be termed an alternat- 
ing direction explicit method. 

4. Use both equations 2.11 and 2.12 at each time level and average the results. 
That is 

(2.17) = Vl,m,n+l + ZI,m,n+l 
2 

The variables on the right side of equation 2.11 and 2.12 at time level n are replaced 
by r's. 

5. Use equations 2.13 and 2.14 alternately in the same manner as described 
under scheme 3. For example, equation 2.13 may be used on odd time levels and 
equation 2.14 may be used on even time levels. It may be considered that schemes 
3 and 5 differ only in the direction of computation. Suppose computations are made 
on a square in the first quadrant of a two-dimensional space. Computations, using 
scheme 3, proceed from southwest to northeast, then from northeast to southwest, 
etc. Using scheme 5, computations proceed from northwest to southeast, then from 
southeast to northwest, etc. 

3. Stability. Stability requirements simply imply that errors present at any 
stage of the computation do not grow in successive levels of computation. Reference 
[2] gives a stability condition which is more restrictive than necessary, w > 2. 

The correct stability condition, w > 0, is shown in reference [3]. Use of the von 
Neumann method [7], [8] gives the stability condition, w > 0, for the schemes listed 
above. The von Neumann method assumes that a set of errors Ejm,, exist at time 
level n and this error may be expanded in a finite trigonometric series 

(3.1) EL,m,n = Z Z Ahj,neleim 
h i 

_hirAx _jirAy where ax , O'Brien [7] shows how coefficients A in equation 

3.1 may be computed, but the computation is not required here. 
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Stability implies that the absolute value of Ah,j,n+l/Ah,j,n cannot be greater 
than unity for all possible h, j, n. By substituting the general term of equation 3.1 
into equation 2.11 cancelling common factors and solving for the ratio of successive 
A coefficients, one obtains 

(32) Ajn+l _ w -1-c2 + e + c2e 

Ah,j,n w + 1 c2 - e - c2e-ig 

Call the numerator and denominator of the right side of equation 3.2 N and D 
respectively. The imaginary parts of N and D are identical. Thus the absolute value 
of N/D will be less than or equal to unity provided the following condition is 
satisfied 

(3.3) [Re(D)]2 -[Re(N)]2 ? 0 

By expansion of N and D it follows that 

(3.4) [Re(D)] 2- [Re(N)]2 = 4w[1 - cos ax + c2(1 - cos )]. 

This obviously satisfies condition 3.3 for all w > 0. Thus the difference scheme 
given by equation 2.11 is stable for positive time increments of any magnitude. 

Performing similar analyses on equations 2.12, 2.13, and 2.14 shows that these 
difference schemes are stable for time increments of any size. 

4. Truncation Errors. An acceptable difference scheme must converge to the 
partial differential equation as increment sizes of the independent variables vanish. 
This property is called consistency and it requires that the truncation error, defined 
below, vanish as the mesh size vanishes. Operator L has a trunction error given by 

Ot ax2 
(4.1) EL = L(v)- 

For simplicity only the one-dimensional case will be treated. Error terms in Ay 
will be of the same form as those in Ax and the following results may be easily 
expanded to two space dimensions. By virtue of this simplification, equations 2.7 
and 2.9 are identical as are equations 2.8 and 2.10. Thus, it is only necessary to 
consider consisteney of the L and R operators with the diffusion equation. Con- 
sistency of both L and R operators with the diffusion equation is sufficient to 
guarantee consistency of all the difference schemes listed above. The analysis below 
follows the arguments of Richtmyer [5, p. 18]. Assume v and z are continuous 
functions of x, t and have Taylor series expansions, through fourth order terms. 
Difference quotients in equations 2.7 are as follows 

(4.2) - = (,Ax)-' + 2X2 + + + 
(AX)2 ax 2 ax2 6 ax3 

Vlnl- =ll,+ (A)a v l ay At~ a2v AXa(V 
(AX)2x) a- 

- + - J + 

(4.3) (x2ax 2ax Ax) axat 6ax 
At a3v (At)2 a 3v (At)83 a3v 
2 ataX2 2AX 028ax 6(AX)2 at3 

n+l - V1n av At a2v + (At)2 a3v+ 

At at 2 at 6 at3 
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Add equation 4.4 and 4.3 and subtract equation 4.2 to obtain 

a va2v + 
At 03v /At\ a2v (At)2 av 

(4.5) L(v) 2 - - 9 _ X + 1+ + 
At Ox2 2 \0t2 AtOx2 \ax Oxot 2Ax axat2 

(4.6) EL = (At ) a2 + At /)2v la3 + (At)2 d3v + l 
/\Ax/Oxdt 2 

kOt2 atax2 2Ax axat2 + 
Derivatives above are taken at lAx, nAt. If v satisfies the diffusion equation, the 
second term of the EL expansion vanishes. In the above development the fourth 
order terms have been dropped. Consistency of the L operator with the diffusion 
equation requires that At/Ax -O 0 as Ax -* 0. By diminishing Ax and At such that 
w is constant, the leading term of equation 4.6 would be of first degree in Ax, 
all other terms being of higher order. By a similar procedure ER, the truncation 
error for operator R is 

(t a\ z At a 2z _ a3z _ (At)2 a3z 

(4.7)* ER - \~Ax/ OxOt +2 kt2 OtOxt 2Ax axat2 ? 

Consistency of the R operator will be satisfied by setting Ax and At to zero such 
that w is constant. This procedure of using constant w is sufficient to guarantee 
consistency of all difference schemes listed above. Because the leading terms of 4.6 
and 4.7 have opposite signs, averaging results of L and R operators, scheme 4, 
has a truncation error of second degree. 

In applications, scheme 3, an alternating direction explicit method, seems to 
yield much more favorable truncation errors than either schemes 1 or 2. Errors 
introduced by operator L appear to be partially compensated by using operator R 
in the following time step. The same results hold for scheme 5. 

5. Some Numerical Examples. As a simple example, the following problem 
was treated 

au a2 u (5.1) dT Ox2 At aX2 

(5.2) u(x, 0) = 1 

(5.3) u(0, t) = 0 

(5.4) u(1, t) - 1. 

The exact solution, from Carslaw and Jaeger [6, p. 100] was programmed for a 
Burroughs 205 computer. Listed in Table 1 are errors, v - u, for the point x = 0.5, 
t = 0.16. Uniform distance increments of 0.1 and uniform time steps shown below 
were used. Firom the exact solution, u was computed as 0.63124. The implicit scheme 
used is the conventional T form, see p. 93, ? 2, of Richtmyer [5]. 

Note that the errors corresponding to schemes 1 and 2 vary almost linearly 
with At. Scheme 1 gives errors which are negative and scheme 2 gives errors which 
are positive. These results support predictions of equations 4.6 and 4.7. Both 
schemes 3 and 4 give errors of smaller magnitude than corresponding errors of 
schemes 1 or 2. Of the schemes listed, scheme 3 is preferred since it is more accurate 
and requires less computer time. Scheme 3 required 40% as much computing time 
as did the implicit method. 
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TABLE 1 

Error Tabulation For One-Dimensional Example 

Time increment 
Method 

0.005 0.01 0.02 

Implicit 0.0056 0.0104 0.0197 
Scheme 1 -0.0122 -0.0250 -0.0516 
Scheme 2 0.0137 0.0276 0.0609 
Scheme 3 (using L first) 0.0020 0.0058 0.0133 
Scheme 4 0.0031 0.0093 0.0268 

TABLE 2 
Error Tabulation for Two-Dimensional Example 

At 
Scheme 

0.02 0.01 0.005 0.0025 

3 starting northeast -0.0255 0.0012 0.0000 -0.0013 
a starting northwest -0.0132 0.0011 -0.0002 -0.0014 
alternating direction implicit 0.0032 -0.0039 -0.0021 -0.0019 

The following two dimensional problem was considered 

au _au au 
(5.5) -= + At aX2 Ty 42 

(5.6) u(x, y, 0) = 1 

(5.7) u(1, y, t) = u(x, 1, t) = 0 

(5.8) a3u 
. O,y,t = ay x,O,t = 0. 

This is the same problem treated by Peaceman and Rachford [8]. Computation 
using the exact solution gave a value of 0.62177 at x = 0.5, y = 0.5, t = 0.08. 
Using uniform distance increments of 0.1 and uniform time steps, numerical 
estimates were obtained. The errors presented in Table 2 are the numerical solution 
minus the exact solution. The alternating direction implicit method is that de- 
scribed in [8] and the method employed to solve the simultaneous equations was 
that given in [8]. For this problem schemes 3 and 5 gave equivalent accuracy and 
both compared favorably with the alternating direction implicit method. Especially 
interesting is the fact that schemes 3 and 5 required about 20 % as much computing 
time as did the implicit method. 

6. Conclusion. The alternating direction explicit method for generating nu- 
merical solutions to the diffusion equation is stable for time increments of any 
magnitude. Because it is an explicit method, it holds a speed advantage over 
implicit methods for computations over a single time level. The above exanmple 
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problems suggest that there is no appreciable loss of accuracy by using the alternat- 
ing direction explicit method instead of an implicit method. 
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